On the Combination of Locally Optimal Pairwise Classifiers
نویسندگان
چکیده
Classification methods generally rely on some idea about the data structure. If the specific assumptions are not met, a classifier may fail. In this paper the possibility of combining classifiers in multi-class problems is investigated. Multi-class classification problems are split into two class problems. For each of the latter problems an optimal classifier is determined. The results of applying the optimal classifiers on the two class problems can be combined using a pairwise coupling algorithm. In this paper exemplary situations are investigated where the respective assumptions of Naive Bayes or the classical Linear Discriminant Analysis (LDA) fail. It is investigated at which degree of violations of the assumptions it may be advantageous to use single methods or a classifier combination by pairwise coupling.
منابع مشابه
Optimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm
Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminat...
متن کاملOptimal Aggregation of Classifiers and Boosting Maps in Functional Magnetic Resonance Imaging
We study a method of optimal data-driven aggregation of classifiers in a convex combination and establish tight upper bounds on its excess risk with respect to a convex loss function under the assumption that the solution of optimal aggregation problem is sparse. We use a boosting type algorithm of optimal aggregation to develop aggregate classifiers of activation patterns in fMRI based on loca...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملA Multiclass Classification Method Based on Multiple Pairwise Classifiers
In this paper, a new method of composing a multiclass classifier using pairwise classifiers is proposed. A “Resemblance Model” is exploited to calculate a posteriori probability for combining pairwise classifiers. We proved the validity of this model by using approximation of a posteriori probability formula. Using this theory, we can obtain the optimal decision. An experimental result of handw...
متن کاملA Pairwise Ensemble Approach for Accurate Genre Classification
Text classification, whether by topic or genre, is an important task that contributes to text extraction, retrieval, summarization and question answering. In this paper we present a new pairwise ensemble approach, which uses pairwise Support Vector Machine (SVM) classifiers as base classifiers and “input-dependent latent variable” method for model combination. This new approach better captures ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eng. Appl. of AI
دوره 22 شماره
صفحات -
تاریخ انتشار 2007